Artificial Intelligence CE-417, Group 1

Computer Eng. Department Sharif University of Technology

Spring 2024

By Mohammad Hossein Rohban, Ph.D.
Courtesy: Most slides are adopted from 15-780 course at CKU.

Continuous Optimization

Example: Weber Point

- Given a collection of cities (assume on 2D plane) how can we find the location that minimizes the sum of distances to all cities?
- Denote the locations of the cities as $y^{(1)}, \ldots, y^{(m)}$
- Write as the optimization problem:

$$
\underset{x}{\operatorname{minimize}} \sum_{i=1}^{m}\left\|x-y^{(m)}\right\|_{2}
$$

Example: Image deblurring and denoising

(a) Original image.

(b) Blurry, noisy image.

(c) Restored image.

Figure from (O'Connor and Vandenberghe, 2014)

- Given corrupted image $Y \in \mathbb{R}^{m \times n}$, reconstruct the image by solving the optimization:

$$
\underset{X}{\operatorname{minimize}} \sum_{i, j}\left|Y_{i j}-(K * X)_{i j}\right|+\lambda \sum_{i, j}\left(\left(X_{i j}-X_{i, j+1}\right)^{2}+\left(X_{i+1, j}-X_{i j}\right)^{2}\right)^{\frac{1}{2}}
$$

- where K * denotes convolution with a blurring filter

Example: robot trajectory planning

- Many robotic planning tasks are more complex than shortest path, e.g. have robot dynamics, require "smooth" controls
- Common to formulate planning problem as an optimization task
- Robot state x_{t} and inputs u_{t} :

$$
\begin{array}{ll}
\underset{x_{1: T}, u_{1: T-1}}{\operatorname{minimize}} & \sum_{i=1}^{T}\left\|u_{t}\right\|_{2}^{2} \\
\text { subject to } & x_{t+1}=f_{\text {dynamics }}\left(x_{t}, u_{t}\right) \\
& x_{t} \in \text { FreeSpace, } \forall t \\
& x_{1}=x_{\text {init }}, x_{T}=x_{\text {goal }}
\end{array}
$$

Figure from (Schulman et al., 2014)

Example: Machine Learning

- As we will see in much more detail shortly, virtually all (supervised) machine learning algorithms boil down to solving an optimization problem

$$
\underset{\theta}{\operatorname{minimize}} \sum_{i=1}^{m} \ell\left(h_{\theta}\left(x^{(i)}\right), y^{(i)}\right)
$$

where

- $x^{(i)} \in \mathcal{X}$ are inputs
- $y^{(i)} \in y$ are outputs
- ℓ is a loss function
- h_{θ} is a hypothesis function parameterized by θ

The benefit of optimization

- One of the key benefits of looking at problems in Al as optimization problems: we separate out the definition of the problem from the method for solving it.
- For many classes of problems, there are off-the-shelf solvers that will let you solve even large, complex problems, once you have put them in the right form.

- Classes of optimization problems

- Many different names for types of optimization problems: linear programming, quadratic programming, nonlinear programming, semidefinite programming, integer programming, geometric programming, mixed linear binary integer programming (the list goes on and on, can all get a bit confusing)
- We're instead going to focus on two dimensions: convex vs. nonconvex and constrained vs. unconstrained

Constrained vs. unconstrained

$\underset{x}{\operatorname{minimize}} \quad f(x)$
$\underbrace{\text { minimize }}_{x_{2}}$
$\stackrel{x}{x}$ subject to $x \in \mathcal{C}$

- In unconstrained optimization, every point $x \in \mathrm{R}^{\mathrm{n}}$ is feasible, so singular focus is on minimizing $f(x)$
- In contrast, for constrained optimization, it may be difficult to even find a point $x \in \mathcal{C}$
- Often leads to kind of different methods for optimization

How hard is real-valued optimization?

- How long does it take to find an ε-optimal minimizer of a real-valued function?

General function: impossible! $x \in \mathbb{R}^{n}$

- We need to make some assumptions about the function:
- Assume f is Lipschitz-continuous: (can not change too quickly)

$$
|f(x)-f(y)| \leq L\|x-y\| .
$$

How hard is real-valued optimization? (cont.)

- After t iterations, the error of any algorithm is $\Omega\left(\frac{1}{t^{1 / n}}\right)$.
- Any grid-search is nearly optimal
- Optimization is hard, but assumptions make a big difference.
- we went from impossible to very slow

Convex vs. nonconvex optimization

Convex function

Nonconvex function

- Originally, researchers distinguished between linear (easy) and nonlinear (hard) problems
- But in 80 s and 90 s, it became clear that this wasn't the right distinction, key difference is between convex and nonconvex problems
- Convex problem:

```
    minimize f(x)
    x
subject to }x\in\mathcal{C
```

where f is a convex function and \mathcal{C} is a convex set

Convex sets

Convex set

Nonconvex set

- A set \mathcal{C} is convex if, for any $x, y \in \mathcal{C}$ and $0 \leq \theta \leq 1$
- $\theta x+(1-\theta) y \in \mathcal{C}$
- Examples:
- All points $\mathcal{C}=\mathrm{R}^{\mathrm{n}}$
- Intervals $\mathcal{C}=\left\{x \in \mathrm{R}^{\mathrm{n}} \mid l \leq x \leq u\right\}$ (elementwise inequality)
- Linear equalities $\mathcal{C}=\left\{x \in \mathrm{R}^{\mathrm{n}} \mid A x=b\right\}$ (for $A \in \mathrm{R}^{\mathrm{m}^{*} \mathrm{n}}, b \in \mathrm{R}^{\mathrm{m}}$)
- Intersection of convex sets $\mathcal{C}=\bigcap_{i=1}^{m} \mathcal{C}_{i}$

Convex functions

- A function $f: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$ is convex if, for any $x, y \in \mathrm{R}^{\mathrm{n}}$ and $0 \leq \theta \leq 1$

$$
f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)
$$

- Convex functions "curve upwards" (or at least not downwards)
- If f is convex then $-f$ is concave
- If f is both convex and concave, it is affine, must be of form:

$$
f(x)=\sum_{i=1}^{n} a_{i} x_{i}+b
$$

$2^{\text {nd }}$ derivative being positive iff convexity (one dimensional)

if part

From convexity, $f(t a+(1-t) b) \leqslant t f(a)+(1-t) f(b)$.
Let $t=1 / 2, a=x-h$, and $b=x+h$.
Then

$$
\begin{gathered}
f(x) \leqslant \frac{1}{2} f(x-h)+\frac{1}{2} f(x+h) \\
\Longrightarrow f(x+h)-2 f(x)+f(x-h) \geqslant 0
\end{gathered}
$$

Only if part
Proof: We use the Taylor series expansion of the function around x_{0} :

$$
\begin{equation*}
f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x^{*}\right)}{2}\left(x-x_{0}\right)^{2}, \tag{2.73}
\end{equation*}
$$

where x^{*} lies between x_{0} and x. By hypothesis, $f^{\prime \prime}\left(x^{*}\right) \geq 0$, and thus the last term is nonnegative for all x.

We let $x_{0}=\lambda x_{1}+(1-\lambda) x_{2}$ and take $x=x_{1}$, to obtain

$$
\begin{equation*}
f\left(x_{1}\right) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left((1-\lambda)\left(x_{1}-x_{2}\right)\right) . \tag{2.74}
\end{equation*}
$$

Similarly, taking $x=x_{2}$, we obtain

$$
\begin{equation*}
f\left(x_{2}\right) \geq f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(\lambda\left(x_{2}-x_{1}\right)\right) . \tag{2.75}
\end{equation*}
$$

Multiplying (2.74) by λ and (2.75) by $1-\lambda$ and adding, we obtain (2.72). The proof for strict convexity proceeds along the same lines.

Hessian being positive semi-definite iff convexity (multidimensional)

- Function $f($.$) is convex iff its one-dimensional projection along any direction d$, $g(t)=f(.+t d)$ is convex.
- Note that the $2^{\text {nd }}$ derivative of g is $d^{\top} H_{f} d$, where H_{f} is the hessian of the function f .
- $d^{\top} H_{f} d$ being non-negative for any d means H_{f} being positive semi-definite.

Examples of convex functions

Exponential: $f(x)=\exp (a x), a \in \mathbb{R}$
Negative logarithm: $f(x)=-\log x$, with domain $x>0$
Squared Euclidean norm: $f(x)=\|x\|_{2}^{2} \equiv x^{T} x \equiv \sum_{i=1}^{n} x_{i}^{2}$
Euclidean norm: $f(x)=\|x\|_{2}$
Non-negative weighted sum of convex functions

$$
f(x)=\sum_{i=1}^{m} w_{i} f_{i}(x), \quad w_{i} \geq 0, f_{i} \text { convex }
$$

Poll: convex sets and functions

Which of the following functions or sets are convex?

1. A union of two convex sets $\mathcal{C}=\mathcal{C}_{1} \cup \mathcal{C}_{2}$
2. The set $\left\{x \in \mathbb{R}^{2} \mid x \geq 0, x_{1} x_{2} \geq 1\right\}$
3. The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x)=x_{1} x_{2}$
4. The function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}, f(x)=x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}$

Convex Optimization

- The key aspect of convex optimization problems that make them tractable is that all local optima are global optima.
- Definition: a point x is globally optimal if x is feasible and there is no feasible y such that $f(y)<f(x)$
- Definition: a point x is locally optimal if x is feasible and there is some $R>0$ such that for all feasible y with $\|x-y\|_{2} \leq R, f(x) \leq f(y)$
- Theorem: For a convex optimization problem all locally optimal points are globally optimal.

Proof of global optimality

- Proof: Given a locally optimal x (with optimality radius R), and suppose there exists some feasible y such that $f(y)<f(x)$

Now consider the point

$$
z=\theta x+(1-\theta) y, \quad \theta=1-\frac{R}{2\|x-y\|_{2}}
$$

1) Since $x, y \in \mathcal{C}$ (feasible set), we also have $z \in \mathcal{C}$ (by convexity of \mathcal{C})
2) Furthermore, since f is convex:

$$
\begin{aligned}
& f(z)=f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)<f(x) \text { and } \\
& \|x-z\|_{2}=\left\|x-\left(1-\frac{R}{2\|x-y\|_{2}}\right) x+\frac{R}{2\|x-y\|_{2}} y\right\|_{2}=\left\|\frac{R(x-y)}{2\|x-y\|_{2}}\right\|_{2}=\frac{R}{2}
\end{aligned}
$$

Thus, z is feasible, within radius R of x, and has lower objective value, a contradiction of supposed local optimality of x

The gradient

- A key concept in solving optimization problems is the notation of the gradient of a function (multi-variate analogue of derivative)
- For $f: \mathrm{R}^{\mathrm{n}} \rightarrow \mathrm{R}$, gradient is defined as vector of partial derivatives

- Points in "steepest direction" of increase in function f.

Gradient descent

- Gradient motivates a simple algorithm for minimizing $f(x)$: take small steps in the direction of the negative gradient

Algorithm: Gradient Descent

 Given:Function f, initial point x_{0}, step size $\alpha>0$
Initialize:

$$
x \leftarrow x_{0}
$$

Repeat until convergence:

$$
x \leftarrow x-\alpha \nabla_{x} f(x)
$$

- "Convergence" can be defined in a number of ways

Gradient descent works

- Theorem: For differentiable f and small enough α, at any point x that is not a (local) minimum

$$
f\left(x-\alpha \nabla_{x} f(x)\right)<f(x)
$$

i.e., gradient descent algorithm will decrease the objective

- Proof: Any differentiable function f can be written in terms of its Taylor expansion: $f(x+v)=f(x)+\nabla_{x} f(x)^{T} v+O\left(\|v\|_{2}^{2}\right)$

Gradient descent works (cont.)

- Choosing $v=-\alpha \nabla_{x} f(x)$, we have

$$
\begin{aligned}
f\left(x-\alpha \nabla_{x} f(x)\right) & =f(x)-\alpha \nabla_{x} f(x)^{T} \nabla_{x} f(x)+O\left(\left\|\alpha \nabla_{x} f(x)\right\|_{2}^{2}\right) \\
& \leq f(x)-\alpha\left\|\nabla_{x} f(x)\right\|_{2}^{2}+C\left\|\alpha \nabla_{x} f(x)\right\|_{2}^{2} \\
& =f(x)-\left(\alpha-\alpha^{2} C\right)\left\|\nabla_{x} f(x)\right\|_{2}^{2} \\
& <f(x) \quad\left(\text { for } \alpha<1 / C \text { and }\left\|\nabla_{x} f(x)\right\|_{2}^{2}>0\right)
\end{aligned}
$$

- (Watch out: a bit of subtlety of this line, only holds for small $\alpha \nabla_{x} f(x)$)
- We are guaranteed to have $\left\|\nabla_{x} f(x)\right\|_{2}^{2}>0$ except at optima
- Works for both convex and non-convex functions, but with convex functions guaranteed to find global optimum

Gradient descent in practice

- Choice of α matters a lot in practice:

$$
\underset{x}{\operatorname{minimize}} 2 x_{1}^{2}+x_{2}^{2}+x_{1} x_{2}-6 x_{1}-5 x_{2}
$$

$\alpha=0.05$

$\alpha=0.2$

$\alpha=0.42$

