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Continuous Optimization
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Example: Weber Point

~

_ * Given a collection of cities (assume on 2D plane) how can we find the location

that minimizes the sum of distances to all cities? o
* Denote the locations of the cities as Y <1), cee s y<m) o o~ o
* Write as the optimization problem: ‘
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Example: Image deblurring and denoising

(a) Original image. (b) Blurry, noisy image. (c) Restored image.

Figure from (O’Connor and Vandenberghe, 2014)

e Given corrupted image Y € R™*", reconstruct the image by solving the

optimization:

mlmmlze Z| — (K x X) m’ +)\Z( X — X ,g+1> + (Xz'+1,j _Xij)Q)%

1]

* where K * denotes convolution with a blurring filter =

S
T e\
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\/ ~ Example: robot trajectory planning

—

~* Many robotic planning tasks are more complex than shortest path, e.g. have

robot dynamics, require “smooth” controls
* Common to formulate planning problem as an optimization task

* Robot state x, and inputs u,:

T

minimize Y [u, 3
o Er b B Ao

SU-b.jeCt to L1 = fdynamics (xta ut>
x, € FreeSpace, Vt
T1 = Tinit, Tp=

init?

1 Figure from (Schulman et al., 2014)
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Example: Machine Learning

~

* As we will see in much more detail shortly, virtually all (supervised) machine

learning algorithms boil down to solving an optimization problem

e (4)) o,(%)
mmlemlze;ah@(ﬂi L y™)

where
. (V) c X are inputs
. y(z) & y are outputs
* / is a loss function

e hisa hypothesis function parameterized by
0



The benefit of optimization

* One of the key benefits of looking at problems in Al as optimization problems:

we separate out the definition of the problem from the method for solving it.

* For many classes of problems, there are off-the-shelf solvers that will let you

solve even large, complex problems, once you have put them in the right form.
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Classes of optimization problems

~ * Many different names for types of optimization problems: linear
programming, quadratic programming, nonlinear programming, semidefinite
programming, integer programming, geometric programming, mixed linear

binary integer programming (the list goes on and on, can all get a bit

confusing)

* We're instead going to focus on two dimensions: convex vs. nonconvex and

constrained vs. unconstrained

Constrained A----------------------------------g.

Unconstrained

Convex Nonconvex



Constrained vs. unconstrained

A A C

xr * i *
1 ig 1 T

> >
i) X2

minimize f(x)
o

minimize f(x)
T subject to z € €

* In unconstrained optimization, every point x € R" is feasible, so singular focus is
on minimizing f(x)
* In contrast, for constrained optimization, it may be difficult to even find a point

x EC

* Often leads to kind of different methods for optimization
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How hard is real-valued optimization?

~—

* How long does it take to find an €-optimal minimizer of a real-valued

function? :
min f(x).
General function: impossible! XER”

* We need to make some assumptions about the function:

* Assume f is Lipschitz-continuous: (can not change too quickly)

f(x) = f(y)| < Lllx =yl




) A

- How hard is real-valued optimization? (cont.)

, 1
* After t iterations, the error of any algorithm is () (m)

* Any grid-search is nearly optimal

* Optimization is hard, but assumptions make a big difference.

* we went from impossible to very slow
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Convex vs. nhonconvex optimization

fi(x) fo(x)

Convex function Nonconvex function
* Originally, researchers distinguished between linear (easy) and nonlinear

(hard) problems

* But in 80s and 90s, it became clear that this wasn’t the right distinction, key

difference is between convex and nonconvex problems

* Convex problem:
minimize f(x)

xXr
subject to x € €

where f is a convex function and C is a convex set ./

Nt



Convex sets

AN

Convex set Nonconvex set
* Aset Cis convex if, forany x, yECand 0 <0 < 1

cOx+(1—0)yecC
* Examples:
e All points C = R"
* Intervals C = {x ER" | [ < x < u } (elementwise inequality)
* Linear equalities C = {x ER" | Ax = b} (for A € R™™, b € R™)

L m
* Intersection of convex sets C = ;24 C;
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Convex functions

< A function f : R" — R is convex if, forany x, y ER"and 0 < 0 < 1

fllx+ (1—0)y) <O0f(x)+(1—06)f(y)

S—

* Convex functions “curve upwards” (or at least not downwards)
* If f is convex then —f is concave

* If f is both convex and concave, it is affine, must be of form:
n

/() :Zaz’fcz‘+b

= ~/ N/
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2"vderivative being positive iff convexity (one

9 dimensional)

if part
From convexity, f(ta + (1 —t)b) < tf(a) + (1 — t) f(b).
Lett=1/2,a=x— h,and b = x + h.
Then

F0) < 5 S = W)+ 5 fx+ )
= f(x+h)-2fx)+ f(x—h)20

e’
Only if part
Proof: We use the Taylor series expansion of the function around xp:
| . ” I {x") >
f(x) = f(xp) + f (x0)(x — xg) + (x — xp)°, (2.73)

where x* lies between xy and x. By hypothesis, f”(x*) = 0, and thus

the last term is nonnegative for all x.
We let xg = Ax; + (1 — A)x2 and take x = x, to obtain

f(x1) = f(xp) + f'(xp)((1 = A)(x; — x)). (2.74)
Similarly, taking x = x,, we obtain
f(x2) = f(xg) + f (x0)(A(x2 — x1)). (2.75)

Multiplying (2.74) by A and (2.75) by 1 — A and adding, we obtain (2.72).
The proof for strict convexity proceeds along the same lines. ]
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_Hessian being positive semi-definite iff convexity (multi-
dimensional)

~

* Function f(.) is convex iff its one-dimensional projection along any direction d,

g(t) = f(.+td) is convex.

* Note that the 2" derivative of g is d" H; d, where H; is the hessian of the

function f.

* d" H; d being non-negative for any d means H; being positive semi-definite.
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Examples of convex functions

Exponential: f(x) = exp(az), a € R

Negative logarithm: f(x) = — log x, with domain x > 0

Squared Euclidean norm: f(z) = |z||3 =2tz =Y" 27

i=1""¢
Euclidean norm: f(x) = ||z,

Non-negative weighted sum of convex functions
™m
f(x) = Zwifi(x), w, > 0, f, convex
i=1

-
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\/ Poll: convex sets and functions

—

S

Which of the following functions or sets are convex?

1. Aunion of two convex sets € = € U €,
2. Theset{r € R?|x > 0,z,2, > 1}
3. Thefunction f:R* — R, f(z) = z,2,

4. Thefunctionf:R? — R, f(z) = 22 + 23 + x, 7,

u\/ @)



- Convex Optimization

~—

* The key aspect of convex optimization problems that make them tractable is

that all local optima are global optima.

* Definition: a point x is globally optimal if x is feasible and there is no
feasible y such that f(y) < f(x)

* Definition: a point x is locally optimal if x is feasible and there is some R > 0O

such that for all feasible y with H:E — yH2 < R, f(ZIZ) < f(y)

* Theorem: For a convex optimization problem all locally optimal points are

globally optimal.



\/ Proof of global optimality

- Proof: Given a locally optimal x (with optimality radius R), and suppose there
_ exists some feasible y such that f(y) < f(x)

Now consider the point

z=0r+(1—-0)y, O=1-— i

sz_yHQ

1) Since z,y € € (feasible set), we also have z € € (by convexity of €)

2) Furthermore, since f is convex:

f(z) = flbx + (1—0)y) < 0f(x)+ (1 —9)f<y)<£(fb’) and

R (z—y) R

vzl = [ = (1-5php)e yll,= | =3

|z — 2l 2e—olo) % T 2ol Y, = [Rle—alll, = 2
Thus, z is feasible, within radius R of x, and has lower objective value, a 20

contradiction of supposed local optimality of x

e



\/ The gradient

—

—/* A key concept in solving optimization problems is the notation of the gradient

of a function (multi-variate analogue of derivative)

* For f : R" — R, gradient is defined as vector of partial derivatives

3y o, 2
Gradient vector feld and level curves of f{x,yy=x"-3x-2y

[ —— Y~ — ——p—
SR ™S ™A & l r ¢ ¥ ¥ ¥ K e ] A j‘d-} N )
i/ . - R
.." =N AT = J: ¥ i~ ¥ g ¥ I L S 1 A X N -y
0.6 e A A . ! o/ EN g » » > » ry / } Y S =
' / \ { [ |
0.4~-. S :\"'-"' "*\'-"‘ R | /0 N )"jl - = > r'd s / I N . e T ’,"t
. ' l.
0.2 = - ,l:~ ':L'- | - - - - e f.-
| | | | |
J-———— — - em e e e 4= = a= -— —_ —_— e
|| ) |
" l, | < L
0.2 D J | -Ih
I¢ ..I_ ! | ]
. »_.‘b_ r ’ 1 - ' - . '. -
|’ r, b \ \ - <
-].4 I‘ \ l| '|'
0.6 & S G VN * \ ! A 4
A L0 P . L) 8 » » . " + - 7’l"
0.8 =7 A 1 > - vl N -
"-.. '~.\ A B ] t 3 % » » » % P N - \,
- - - A | vl N
2 e} 1 0.5 0 0.5 1 1.5 2

* Points in “steepest direction” of increase in function f.
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Gradient descent

“ » Gradient motivates a simple algorithm for minimizing f(x): take small steps in

the direction of the negative gradient

~

Algorithm: Gradient Descent
Given:

Function f, initial point x, step size a > 0
Initialize:

T < I
Repeat until convergence:

r«—x —aV _f(x)

* “Convergence” can be defined in a number of ways

>\ - u



Gradient descent works

* Theorem: For differentiable f and small enough @, at any point X that is not a

S—

(local) minimum
f(z—aV,f(z)) < f(z)
i.e., gradient descent algorithm will decrease the objective
* Proof: Any differentiable function f can be written in terms of its Taylor

expansion: f(:lj’ ?}) — f([ll’) fo(:v)Tv O(”””%)

A

flx +v)

(@) + Vaf (@)
>

T+ v I
\J )\




~ Gradient descent works (cont.) -

o, Choosing v = —aV f( ) we have
) f(iL’—OéVa;f(af)) fx) —aV, f(2)'V, f(z) +O0(|aV, f(z)]3)

/-

* (Watch out: a bit of subtlety of this line, only holds for small Ozvxf(ilj))

f(z) —a|V f(z)]3 + ClaV, f(z)|3
f(z) — (a—a?C) |V, f(2)]3
f(z) (for a« < 1/C and |V, f(x)||5 > 0)

* We are guaranteed to have Hvxf<x) ”g> 0 except at optima

* Works for both convex and non-convex functions, but with convex functions

guaranteed to find global optimum
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\/ Gradient descent in practice

e

S
* Choice of @ matters a lot in practice:

minimize 2x% + x5 + 1,15 — 61 — 51,

3.0 3.0 =T 3.0
2.5 2.5 \ 2.5
2.0 2.0 y 2.0
‘2 1.5 Y 1.5 i Y 1.5
1.0 1.0 - 1.0
0.5 0.5 i 0.5
0.0 L ] 0.0 ; ; . ] 0.0 | ! ! -
0.00.51.01.52.0253.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 3.0
x1 x1 x1
a = 0.05 a=0.2 a = 0.42
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